
Automating Data Synchronization,
Checking, Ingestion and Publication for

CMIP6

Ag Stephens & Alan Iwi
(STFC Centre for Environmental Data Analysis)
Thanks to Emma Hibling & Mark Elkington
(Met Office)

verify

Ingest-publish workflow: Requirement

Data
Production

Check
validity

Move into
archive

Generate
mapfiles

Generate
THREDDS

record

Publish to
ESGF Search

Data Provider Data Archive Holding Area Data Node Metadata Index Node

verify verify verify verify

• Check
facets/values
against defined
vocabularies;
• Check content
against MIP
tables;
• Check
spatial/temporal
characteristics;
• Define version.

• Create version
directory;
• Move files into
versioned
directory
structure;
• We use symbolic
links to ensure
only one copy of
each file exists.

• Use standard
tool to generate
mapfiles;
• Store mapfiles in
a standardised
structure at all
nodes;
• Should be able
to re-generate all
mapfiles from the
archive.

• Should be able
to re-generate all
THREDDS records
from the mapfiles.

• This is the part
that makes the
data visible to
portals and other
search tools
linking to ESGF.

Data
Production

SYNCHRONISE

verify

The generalised requirement

Data
Production

Do
something

Something
useful

Something
meaningful

Another
process

The last
thing

Data Provider Somewhere else Somewhere Wherever Another place Last place

verify verify verify verify

Data
Production

• For different datasets (ESGF or other) we can imagine there are different processes.
• Common pattern:

• Each task is isolated.
• "UNDO" behaviour may be desirable (e.g. "remove files", "unpublish")
• Tasks may be managed by:

• Different (Unix) users
• With different access levels
• On different servers.

MOHC-to-ESGF pipeline - CMIP6

MASS (tape store) CEDA (& ESGF)

pull and ingest data

W
rit

e
m

od
el

 o
ut

pu
ts

Message
Queue

(RabbitMQ)

With special thanks to
Emma Hibling and Mark
Elkington (Met Office)

CEDA REceive-to-Publish Pipeline (CREPP)

We have called it "CREPP" - currently an internal ("cedadev")
GitHub project.

Client-server
architecture:

• "Server" is actually just

a DB.
• "Clients" are any

number of Controllers
on any number of
machines.

CREPP: Key concepts

• Dataset ID (ESGF) is the unit of granularity across the
system, e.g.:

• All Controller actions should be atomic wherever
possible. This will maximise the chances of “DO” and
“UNDO” being possible for each Process Stage.

cordex.output.CAS-44.MOHC.ECMWF-ERAINT.evaluation.r1i1p1.
MOHC-HadRM3P.v1.mon.clt.v20150608

Data Model

Dataset

File
(1)

Checksum

Symlink

File
(2)

Checksum

Symlink

File
(3)

Checksum

Symlink

The Data Model is built in Django…each type of box is a relational DB table.

Process
Chain

Data Model

Process Stage (1)

Process Stage (2)

Process Stage (3)

Dataset

File
(1)

Checksum

Symlink

File
(2)

Checksum

Symlink

File
(3)

Checksum

Symlink

The Data Model is built in Django…each type of box is a relational DB table.

Process
Chain

Data Model

Process Stage (1)

Process Stage (2)

Process Stage (3)

Dataset

Status (1)

Status (2)

Status (3)

Global Settings

File
(1)

Checksum

Symlink

File
(2)

Checksum

Symlink

File
(3)

Checksum

Symlink

The Data Model is built in Django…each type of box is a relational DB table.

Event

On change…

"DO" and "UNDO" actions

Action Type QC Ingest Publish (TDS)
DO Run QC

Create
directories;
move files

Publish to
THREDDS

UNDO - Move files back
to cache;
remove
directories

Unpublish from
THREDDS

So how does it work?

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Is there
any work
for me?

I've
added a
dataset

Great, I'll
add them
to the db

QC
needed?

Can I ingest
some data?

Are we
ready for
ESGF?

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Key components

A Process Chain

Controller: Sync

Controller: Ingest

Controller: Publish

Controller: QC

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Is there
any work
for me?

I've
added a
dataset

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

I've
added a
dataset

Great, I'll
add them
to the db

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

QC
needed?

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Can I ingest
some data?

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Ready to
publish?

Controller: Sync

Controller: QC

Controller: Ingest

Controller: Publish

Is there
any work
for me?

I've
added a
dataset

Great, I'll
add them
to the db

QC
needed?

Can I ingest
some data?

Ready to
publish?

Example Process Chain: CMIP6
Process Stage <user>@<host>

1 Message Queue cedauser@mass-cli1

2 QC badc@ingest1

3 Ingestion controller: badc@ingest1
workers: badc@ingest_cluster

4 Mapfile generation badc@ingest1

5 CEDA metadata records badc@ingest1

6 ES-DOC record generation badc@ingest1

7 ESGF publication: DB root@esgf-data1

8 ESGF publication: TDS (without reinit) root@esgf-data1 / new server

9 ESGF publication: TDS main catalog / reload root@esgf-data1 / new server

10 ESGF publication: index badc@ingest1

11 Consume RabbitMQ Message cedauser@mass-cli1

Many Process Stages are re-usable.
The Controller can be re-deployed in
a Process Stage of multiple Process

Chains (for different projects).

Technology choices

Django front-end

Events view - allows real-time monitoring

Special action: "withdraw"

If the MOHC spots a problem with a dataset they may change
the state (via a RabbitMQ message) from "available" to
"withdrawn".

This triggers action at CEDA:

1. If already ingested/published:
– hide?/unpublish

2. If not ingested/published:
– DO NOT ingest/publish.
– Acknowledge/consume the message with "available" state.

Integration issues

Integration with CIM2

• We intend to adopt the cdf2cim tool in the publication
workflow to extract Simulation records.

• These will be automatically generated and pushed to the ES-
Doc server.

Will CREPP handle replication?

NO:
• Replication nodes are being developed to work with Synda (using

GridFTP where possible).
• We expect a different set of recipes/rules to be managing

replication.

(or) YES:
• Replication is a set of tasks on different servers that (can) use the

ESGF Dataset as their unit of granularity.
• The publish/unpublish components could be managed using CREPP.

Need to understand more about Synda post-processing workflows
before we decide on this.

Recovery response
1. The (only) database goes offline:

– All Controllers wait…fail…undo…stop.
– Manual recovery to backup db.
– Re-start all Controllers.

2. Individual Controller (or server it runs on) fails:
– Some datasets are in "claimed" state
– Remove claims
– Let them be re-run by new instance of the Controller

3. Urgent software upgrade required
– Switch on Global Pause
– Current tasks will run to completion; then all will pause; it is safe to

stop all and roll out new software before re-starting

CREPP Status

• Code base developed
• Being tested on operational platform - with first MOHC test

simulations
• Individual Controllers being written to handle specific process

stages
• Needs to be ready soon!

Further information

• Centre for Environmental Data Analysis
– http://www.ceda.ac.uk
– support@ceda.ac.uk

• CREPP code (currently internal to CEDA):
– https://github.com/cedadev/crepp

• Met Office pipeline (climate-dds) code (internal):
– https://code.metoffice.gov.uk/trac/cdds/

If you are interested in finding out more please contact me on:
 ag.stephens@stfc.ac.uk

http://www.ceda.ac.uk
mailto:support@ceda.ac.uk
https://github.com/cedadev/crepp
https://code.metoffice.gov.uk/trac/cdds/
mailto:ag.stephens@stfc.ac.uk

CREPP Terminology

Term Meaning Comments
Queue RabbitMQ instance of a

queue of Dataset held
in MASS with a Met
Office status associated
with them.

Message A message in the
Queue that specifies
the Met Office status
related to a single
Dataset.

Status can be:
available | withdrawn | embargo | superseded.
We only respond to “withdrawn” “superseded” or
“available”. We treat “superseded” as the same as
“available”. Each message will trigger stage 1 of the
processing chain for Met Office data.

CREPP Terminology

Term Meaning Comments
Dataset A set of files that have a

complete ESGF DRS description
including the version
component.

Note that this term has a specific meaning
throughout the system.

Controller A process running on a node
that communicates with the DB
and manages Workers running
locally or remotely.

A Controller can run as a daemon process,
might be invoked by cron or other means.
The key aspects are that it routinely polls
the DB for its next set of tasks and
manages Workers to perform Tasks.

CREPP Terminology

Term Meaning Comments
Worker A process running on a

node that performs a
distinct task and then
terminates.

Workers may be invoked locally or via a
scheduler (e.g. on the “Ingest” cluster).

Task A single complete Action
undertaken by a Worker
when operating on a
single Dataset at a given
Process Stage.

Each completed Task will result in the DB being
updated. Where successful, this will update the
status to trigger the next Controller. An entry will
also be made in the Event Log.

CREPP Terminology
Term Meaning Comments
Event Log A table in the DB that records ALL

outcomes from Tasks per Dataset.

Process
Chain

An ordered set of Process Stages. Multiple ESGF “projects” may use the
same chain and a single project might use
multiple chains for different data
providers.

Process
Stage

A component of the processing
chain that is managed by a
Controller.

E.g. “Run QC”, “Create mapfiles”, etc.

Action Type The attribute of the Task that
specifies the type of behaviour.

Can be: “Do”, “Undo”

	Automating Data Synchronization, Checking, Ingestion and Publication for CMIP6
	Ingest-publish workflow: Requirement
	The generalised requirement
	MOHC-to-ESGF pipeline - CMIP6
	CEDA REceive-to-Publish Pipeline (CREPP)
	CREPP: Key concepts
	Data Model
	Data Model
	Data Model
	"DO" and "UNDO" actions
	So how does it work?
	Key components
	A Process Chain
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Example Process Chain: CMIP6
	Technology choices
	Django front-end
	Events view - allows real-time monitoring
	Special action: "withdraw"
	Integration issues
	Integration with CIM2
	Will CREPP handle replication?
	Recovery response
	CREPP Status
	Further information
	Slide Number 31
	CREPP Terminology
	CREPP Terminology
	CREPP Terminology
	CREPP Terminology

