NCI’s Research Data Services
Providing high-quality data to enable climate and weather science

- Claire Trenham
Kelsey Druken, Adam Steer, Ben Evans, Jon Smillie, Jingbo Wang
• NCI – National Computational Infrastructure
 – Highly integrated peak machine
 • Raijin: 1.2PFlops, >57k cores, Infiniband
 – data store
 • >30PB disk, ~10PB tape, 56Gb FDR Infiniband & 10GigE
 – research clouds
 • NeCTAR public cloud; Tenjin private cloud with Virtual Labs and access to 10+PB National Research Data Collection
 – Services
 • Academic consultants provide user support; scientific visualization; virtual laboratories; application optimization
- **RDS(I)** funding provided to nodes around Australia for the storage of nationally significant data collections.
- NCI focus on the National Environmental Research Data Collection, comprising a range of fields including: climate, weather, Earth observations, ecology & land use, geophysics, geoscience, and astronomy; as well as data holding in social sciences, and bioinformatics.
- Over 10PB ingested and made available to community.
- **Earth Systems Grid Federation** primary node (climate models); **Copernicus Hub** for ESA data.
HPD Data Development Process

DATA SERVING: THREDDS, OpenDAP, WMS, etc.
DATA USAGE: Matlab, R, Python, GDAL, etc.

Digital Object Identifiers (DOI) minting,
Making metadata/data available and discoverable online

FILE (GRANULE)-LEVEL
- Climate and Forecasts (CF) Convention
- Attribute Convention Dataset Discovery (ACDD)
- Additional discipline specific standards

COLLECTION & DATASET-LEVEL
Data Management Plans (ISO 19115, ANZLIC, etc.)

Self-describing file formats (e.g., NetCDF, HDF)
NCI Data Ecosystem

- **Data Creation/Acquisition**
- **Data Store**
- **Data Processing Pipeline**
- **Provenance Tracking**
- **Data Access**
- **Publication** (data, code, science results)
- **Citation for ALL your work**

Visualisation

nci.org.au
NCI have a multi-element system for metadata catalogues and data services

- GeoNetwork, datacatalogue: Find metadata records
- THREDDS Data Service: download or remotely access or view data
- Geoserver (OGC web services), ESGF, ERDDAP, Hyrax, Rasdaman, and filesystem access
- PROMS (provenance), PID service, RD Switchboard
- DOI minting (citation)
Finding the (meta)data

https://datacatalogue.nci.org.au
Just get the bit of the data you need, not whole files!

- **OPeNDAP** – Network Data Access Protocol
 - Subset HDF5/netCDF files, only get bits of the data
- **http://dap.nci.org.au** THREDDS server
 - OPeNDAP/NetCDF Subset Server: subset, remote access
 - Other protocols supported by NCI
 - HTTP download
 - Open Geospatial Consortium Web Services (WMS, WCS, WPS, WFS...)
- Underpins or provides data to a number of VLs
 - Virtual Geophysics Laboratory, WENFO, TERN, ANVGL, NEII, NationalMap, CWSLab, AusGIN, eReefs, BCCVL...
Accessing the data: OPeNDAP & NCSS

- OPeNDAP and NetCDF Subset Service allow subset selection and retrieval.
- Can access files directly from tools (Python etc.), use of Siphon package makes trawling directories much easier.
- Works with netCDF/HDF – standardizing formats is good!
Bring the scientists **to** the data!
Building The Platform for Earth System modelling & Analysis

Integrated HPC-HPD Environment

NCI data movers
VMware
Raijin Login + Data movers
Raijin 1.2 PFlop HPC Compute
Raijin 56Gb FDR IB Fabric
/g/data 56Gb FDR IB Fabric
10 GigE
Massdata (tape)
Persistent global parallel filesystem
Raijin high-speed filesystem
Cache 1.0PB
Tape 12.3PB
~7.1 PB
~4.2 PB
7.6PB

Data Services

THREDDS
ESGF
OPeNDAP
GeoServer

VDI: Cloud scale user desktops on data

Server-side analysis and visualization

Web-time analytics software

Evans et. al. 2014 (ISESS)
Bring the scientists to the data!

- **Tools to support coding, data analysis & visualisation**
- **Virtual Desktop Infrastructure (VDI)** to access, process & analyse data
 - CWSLab
 - AGDC
- Workflow tools allow community to implement analyses pipelines easily
- Many software tools available in this environment, integrated with the global Lustre filesystem and HPC infrastructure
Virtual Desktop Infrastructure

- Access granted per-project, data mounts as requested
- Software can be added as needed
 - Common science tools: python, Matlab, R, QGIS, compilers, libraries, ...
 - pip + virtualenv to manage python packages on top of common python libs for climate science
- Desktops: 32GB RAM, 140GB local scratch, 8vCPUs, max session time 7 days
- User friendly, powerful, functional!
Risks of not centralizing the scientists to the data

• Data downloading and analysis by many users also has potential risks (apart from being too big for this to be feasible!)
 – Versioning of data used in analysis
 – Provenance tracking
 – Errata and Reporting
 – Documentation incorporated in file in case a file gets isolated?

• Bringing scientists to the data in Virtual Laboratories can mitigate these issues by ensuring everyone is working on the same data
• Unfamiliarity with such systems is a large hurdle in gaining access and confidence in using them.

• Established a Moodle LMS: https://training.nci.org.au

• Resources in
 – VDI use
 – Data finding
 – Data services
 – Python examples
 – Scientific use cases
Future directions?

- Web Processing Service to underpin on-demand computed products
- Birdhouse suite for specialised climate processing
- ...?

- NCI THREDDS hosts Australian data contributing to CMIP5, CORDEX, GeoMIP, PMIP3, and soon CDR-MIP. ESGF node will publish same data – in progress!
• Thanks for listening!
• For further information and materials, please see the following links
 – https://nci.org.au
 – https://training.nci.org.au
 – https://esgf.nci.org.au
 – https://github.com/nci/Notebooks
• Contact us: help@nci.org.au