WPS based processing services for the Copernicus Climate Change Service

A. Stephens, S. Kindermann, S. Denvil, W. Som de Ceuff
Centre for Environmental Data Analysis (CEDA), German Climate Compute Centre (DKRZ), Institut Pierre Simon Laplace (IPSL), Royal Netherlands Meteorological Institute (KNMI)

REFERENCES

3. ESGF, https://esgf.llnl.gov/

ARCHITECTURE OF COMPUTE NODE

- Software Components of WPS Service
 - A WPS request (HTTP GET/POST) comes from a WPS client.
 - The Nginx/Gunicorn combination delegates the request to the PyWPS WSGI application.
 - Gunicorn - spawns several workers to use the available CPUs on a single compute node.
 - PyWPS - Python implementation of OGC Web Processing Standard.
 - Supervisor - used to start/stop and monitor services.
 - Processing outputs and status documents are web accessible by the Nginx file-server.
 - Token based access control (using OAuth) for WPS service.
 - WPS Processes are defined for project analysis toolbox, like C3S MAGIC diagnostics.
 - Processing Backend has read-only access to the climate data pool on file-system with CMIP5 climate model projections and observational data.
 - Using PyWPS scheduler extension (Slurm, GridEngine) to run process on a compute-cluster for scalability.

- Climate model projections and observational data.
- Providing the required data and services for global climate projections to the Climate Data Store (CDS) of the Climate Change Service (CDS) portal hosted at ECMWF, UK.
- Data Node - Consisting of vanilla Earth System Grid Federation (ESGF) index and data node.
- Compute Node - Providing compute facilities using the Web Processing Service (WPS) standard interface.
- Processing Backend - External software toolboxes to analyse model climate projections.
- Climate Model Projections (CMIP5, CORDEX) in filesystem cache.
- Quality Control -Climate Model Projections are selected for C3S and quality checked.
- Replication - Using Synda Python library for managing data movement.

Service Interfaces exposed to Climate Data Store (CDS)

- Web Processing Service (WPS) - standard interface for processing.
- OpenDAP - remote data access interface for NetCDF files.
- ESG search - adapted Solr search interface for ESGF data discovery.

Federated C4CDS Nodes

- Geographically distributed and highly available set of data and compute services.
- Federated between the leading European institutes: CEDA, IPSL and DKRZ.
- Using load-balancing across sites / failover strategy.
- All 3 sites of the same replicated local data pool.
- All 3 sites have the same (exact version) software stack using a common software deployment (SDDS).
- CEDA hosts the main node, IPSL and DKRZ take over service when needed.

CLIMATE PROJECTIONS FOR THE CLIMATE DATA STORE (C4CDS)

- Providing the required data and services for global climate projections to the Climate Data Store (CDS) of the Climate Change Service (C3S) portal hosted at ECMWF, UK.
- Data Node - Consisting of vanilla Earth System Grid Federation (ESGF) index and data node.
- Compute Node - Providing compute facilities using the Web Processing Service (WPS) standard interface.
- Processing Backend - External software toolboxes to analyse model climate projections.
- Climate Model Projections (CMIP5, CORDEX) in filesystem cache.
- Quality Control - Climate Model Projections are selected for C3S and quality checked.
- Replication - Using Synda Python library for managing data movement.

Software Components of WPS Service

- A WPS request (HTTP GET/POST) comes from a WPS client.
- The Nginx/Gunicorn combination delegates the request to the PyWPS WSGI application.
- Gunicorn - spawns several workers to use the available CPUs on a single compute node.
- PyWPS - Python implementation of OGC Web Processing Standard.
- Supervisor - used to start/stop and monitor services.
- Processing outputs and status documents are web accessible by the Nginx file-server.
- Token based access control (using OAuth) for WPS service.
- WPS Processes are defined for project analysis toolbox, like C3S MAGIC diagnostics.
- Processing Backend has read-only access to the climate data pool on file-system with CMIP5 climate model projections and observational data.
- Using PyWPS scheduler extension (Slurm, GridEngine) to run process on a compute-cluster for scalability.

COPERNICUS CLIMATE CHANGE SERVICE

- Copernicus is the European Union’s earth observation programme.
- Data from multiple sources: earth observation, satellites and in situ sensors.
- Thematic areas: land, marine, atmosphere, climate change, emergency management, security.
- Users: policymakers and public authorities.

CLIMATE DATA STORE (CDS)

- A climate data store will contain the geophysical information needed to analyse the climate change indicators in a consistent and harmonised way.
- This will combine the functions of a distributed data centre with a set of services and facilities for users and content developers.
- The store will provide data resources and computing facilities that can be utilised, for example, to develop improved climate reanalyses and seasonal forecasts.

REPRESENTATIVE SERVICES

- Climate Model Projections (CMIP5, CORDEX) in filesystem cache.
- Quality Control - Climate Model Projections are selected for C3S and quality checked.
- Replication - Using Synda Python library for managing data movement.

SERVICE INTERFACES EXPOSED TO CLIMATE DATA STORE (CDS)

- Web Processing Service (WPS) - standard interface for processing.
- OpenDAP - remote data access interface for NetCDF files.
- ESG search - adapted Solr search interface for ESGF data discovery.

FEDERATED C4CDS NODES

- Geographically distributed and highly available set of data and compute services.
- Federated between the leading European institutes: CEDA, IPSL and DKRZ.
- Using load-balancing across sites / failover strategy.
- All 3 sites of the same replicated local data pool.
- All 3 sites have the same (exact version) software stack using a common software deployment (SDDS).
- CEDA hosts the main node, IPSL and DKRZ take over service when needed.

ARCHITECTURE OF COMPUTE NODE

- Software Components of WPS Service
 - A WPS request (HTTP GET/POST) comes from a WPS client.
 - The Nginx/Gunicorn combination delegates the request to the PyWPS WSGI application.
 - Gunicorn - spawns several workers to use the available CPUs on a single compute node.
 - PyWPS - Python implementation of OGC Web Processing Standard.
 - Supervisor - used to start/stop and monitor services.
 - Processing outputs and status documents are web accessible by the Nginx file-server.
 - Token based access control (using OAuth) for WPS service.
 - WPS Processes are defined for project analysis toolbox, like C3S MAGIC diagnostics.
 - Processing Backend has read-only access to the climate data pool on file-system with CMIP5 climate model projections and observational data.
 - Using PyWPS scheduler extension (Slurm, GridEngine) to run process on a compute-cluster for scalability.

- Climate Model Projections (CMIP5, CORDEX) in filesystem cache.
- Quality Control - Climate Model Projections are selected for C3S and quality checked.
- Replication - Using Synda Python library for managing data movement.

C3S MAGIC - CLIMATE DATA ANALYSIS

- Developed by KNMI, eScience Center, DLR and others.
- Used by C4CDS as Processing Backend for CMIP5 climate model projections.
- To calculate standardized characteristics from available climate model output.
- ESMValTool - To develop and deliver an enhanced version of the ESMValTool software.
- Metrics - computes and displays a wide set of performance metrics and diagnostics.
- Multi-model products - To combine the climate information generated by various climate models into a single estimate of any future climate signal.
- Climate index time-series - To compute single-model and multi-model time series of climate indices.
- Tailored products - To assure that specific needs of envisaged end users in the selected economic sectors are facilitated by the software.

SDDS - SOFTWARE DEPLOYMENT DEPENDENCY SOLUTION

- Manage and deploy Software for C4CDS Compute Nodes
 - Requirement - To deploy codes from external projects, such as C3S MAGIC / ESMValTool, into the C4CDS Compute Node.
 - SDDS - Consists of a software environment and application, managed through a Github repository, which includes a basic template (contributed by Birdhouse) of a working WPS service (PyWPS).
 - Conda - The template uses a Conda "environment" to record the software dependencies and to build a reproducible software installation.
 - Docker - Used to provide the Compute Node through containers.
 - Ansible - Ansible and Buildout are used to setup a WPS (PyWPS) with all services (Supervisor, Gunicorn, Nginx) and configuration files.
 - SDDS is used to set-up C4CDS Compute Nodes for CMIP5 (global) and CORDEX (regional) climate projections with a specific analysis toolbox.

NEXT STEPS

- Further integration of MAGIC codes.
- Roll-out of C4CDS at all three sites.
- Improved SDDS - using a template generator, replacing Buildout by Ansible, deployment in Docker Cluster.
- Using ESGF OAuth service for secure tokens.