
This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM release: LLNL-POST-XXXXXX

Enhancing the ESGF data node to load balance a distributed cluster
of THREDDS instances

collections:
 - &esgcet
 path: esgcet
 catalogs: /esg/content/thredds/esgcet
 services: [catalog, fileServer, dodsC]

instances:
 - &instance1
 name: instance1
 connectors:
 - protocol: HTTP/1.1
 port: 8080
 - protocol: AJP/1.3
 port: 18009

replicas:
 - gateway: esgf-node
 tds_instance: *instance1
 collection: *esgcet
 port: 18009

Ansible - Automatic configuration
management and deployment

Currently, the ESGF-node includes a gateway to the

services running in the ESGF-node. One of these services is

the TDS web application which runs sharing existing

resources on the host. The ESGF-node design only considers

one TDS instance running besides to the rest of ESGF-node

services. Also, this TDS instance deploys the complete

catalog hierarchy automatically generated by the esg-

publisher, which can become difficult to maintain and to

scale if lots of catalogs are generated.

In this contribution, we show a way of deploying a load

balanced and automatic provisioned cluster of TDS instances.

The definition of the desired infrastructure is declared in a

YAML file, which uses Ansible roles and playbooks, that will

automatically deploy the cluster of TDS instances and

catalogs. The TDS Cluster that conforms this infrastructure is

composed of a gateway, the ESGF Data node and the TDS

instances.

Introduction The Deployment Model

The extended ESGF Data Node

The definition of the desired infrastructure is declared in a

YAML file for Ansible (Infrastructure as Code, IaC), which uses

roles and playbooks, that will automatically deploy the cluster of

TDS instances and catalogs. This definition of the deployment

infrastructure follows the TDS Deployment Model, which is

composed by Collections, Replicas and Instances deployed in

Hosts conforming Clusters.

Collections are hierarchies of THREDDS catalogs that can be

deployed to a regular TDS instance on its own. TDS instances are

Apache Tomcat server instances, accessed from the outside

through a gateway (i.e. reverse proxy), running the TDS web

application in a load balanced way. We refer to every publication

of the collection in the TDS instances as a replica. When a replica

is copied into an instance, a catalogRef tag is added to the

instance's root catalog, which references the root catalog of the

collection. Through this tag, the TDS builds the catalog tree and it

makes the datasets accesible to the gateway.

For the ESGF deployment, collections would correspond to

subsets of the catalogs generated by the ESGF publication

workflow (esgpublish). Through the use of replicas, groups of

hosts will pick up the collections they want to replicate, allowing

large hierarchies of catalogs to be partitioned and distributed

between multiple clusters.

Ansible variables, roles and playbooks are used for

automatic deployment and configuration of the TDS Cluster.

The desired infrastructure is defined through a set of Ansible

variables called the “Deployment Model”. Ansible roles are

divided into “installation” and “configuration” roles.

Ansible
Management

Node

inventoryplaybook

Host 1 (gateway)

Host 2 (tds_instances)

Host N (tds_instances)

SSH

SSH

SSH

rolesDeployment model

The deployment of this infrastructure requires to change some configuration directives in the default configuration of a

ESGF Data Node. We must override the ProxyPass directives in the httpd configuration, in order to embed the directives that

allow mod_proxy to perform the load balancing to all the TDS instances available in the cluster.

We also have to configure the

ESGF Control Filters in the TDS

running in the backend servers, in

order to redirect the authentication

to the ORP running in the ESGF

Data Node, working as the gateway

of the TDS cluster. User session

persistence is achieved through the

use of sticky sessions, which means

that once a user gets a session, he

or she will be routed to the same

TDS instance in future requests.

Requests for datasets will be

distributed into the TDS instances

running in the backend, avoiding

disruptions of the service.

Installation roles are in charge of deploying the software

dependencies required for the infrastructure to run. They

make use of variables to allow administrators to customize

the installation and also to provide information to the

configuration roles.

Configuration roles gather information from the

deployment model and perform the configuration in the

software dependencies installed by the installation roles, such

as registering the TDS instances in the gateway, which

corresponds to the ESGF Data Node in this particular

deployment.

HTTP session clustering
The TDS keeps user sessions through HTTP cookies and the

TDS instances that conform the cluster must be aware of

them. We have considered the following strategies to

maintain user sessions: sticky sessions, tomcat cluster and

memcached manager.

● Sticky sessions ensure that requests for an existing user

session are forwarded always to the same backend instance.

However, a TDS instance that goes down losses the sessions

of its users. It is recommended to replicate sessions using

the tomcat cluster or the memcached manager.

● Tomcat clustering enables user replication although it is

limited in terms of scalability.

● The memcached manager stores user sessions in a

separated service, allowing TDS instances to retrieve

sessions from this store. This service allow user sessions to

persist even when TDS instances become unavailable, since

another TDS instance of the cluster can take over it and

recover the session from memcached.

Conclusions and future work
● THREDDS catalog partitioning is a desirable feature since

it allows to split catalogs into smaller and semantic groups.

● Integration with containers (ansible-container).

● The gateway is a bottleneck in scenarios with heavy

workloads. Alternatives may be evaluated to resolve this

problem e.g. Direct Server Return.

● Required integration with the ESGF publication process.

Collections require standalone catalog trees and the

publisher actually produces one large tree.

● The gateway is now the single point of failure of the

infrastructure, although the TDS service becomes more

resilient to failure.

References
● ansible-thredds-cluster,

https://github.com/SantanderMetGroup/ansible-thredds-cluster

● JASMIN Conference 2017: Advanced Computing for

Environmental Science, Fenández-Tejería, S. Cofiño, A.S.

Kershaw, P. Petrie, R. Pryor, M. Stephens, A.

● THREDDS Data Server, https://doi.org/10.5065/D6N014KG

● ESGF, https://esgf.llnl.gov/

● Memcached-session-manager,

https://github.com/magro/memcached-session-manager

● Linux Virtual Server, http://www.linuxvirtualserver.org/

Ezequiel Cimadevilla, Pablo Celaya, Antonio S. Cofiño

http://meteo.unican.es Contact: antonio.cofino@unican.es

Santander Meteorology Group, Dep. of Applied Mathematics and Computer Science (Univ. Cantabria), 39005 Santander, Spain

ESGF Node

httpd gateway

Data Node

AJP

:Backend server

ESGF
Control
Filters Collection

Replica

Ansible
Roles
and

Playbooks

AJP

Collection
Replica

Deployment
Model

TDS Data Server ORP

ESGF
Control
Filters

TDS Data Server

HTTP
Collection
load balancer

:Backend server

ESGF
Control
Filters Collection

Replica

TDS Data Server

https://github.com/SantanderMetGroup/ansible-thredds-cluster
https://doi.org/10.5065/D6N014KG
https://esgf.llnl.gov/
https://github.com/magro/memcached-session-manager
http://www.linuxvirtualserver.org/
mailto:antonio.cofino@unican.es

	Slide 1

